Building Fuzzy Classifiers with Pairwise Multiclass Support Vector Machines
نویسندگان
چکیده
In this paper, we make a proposal to build a classifier with fuzzy outputs with multiclass Support Vector Machines (SVMs). This allows us to widen the applicability of this kind of powerful and soundly founded classifiers. We consider the pairwise multiclass version and investigate different alternatives for the aggregation process. A number of experiments have been carried out to establish the validity and performance of this approach.
منابع مشابه
Analysis of Multiclass Support Vector Machines
Since support vector machines for pattern classification are based on two-class classification problems, unclassifiable regions exist when extended to problems with more than two classes. In our previous work, to solve this problem, we developed fuzzy support vector machines for one-against-all and pairwise classifications, introducing membership functions. In this paper, for one-against-all cl...
متن کاملFuzzy Pairwise Multiclass Support Vector Machines
At first, support vector machines (SVMs) were applied to solve binary classification problems. They can also be extended to solve multicategory problems by the combination of binary SVM classifiers. In this paper, we propose a new fuzzy model that includes the advantages of several previously published methods solving their drawbacks. For each datum, a class is rejected using information provid...
متن کاملFuzzy LP-SVMs for Multiclass Problems
In this paper, we propose fuzzy linear programming support vector machines (LP-SVMs) that resolve unclassifiable regions for multiclass problems. Namely, in the directions orthogonal to the decision functions obtained by training the LP-SVM, we define membership functions. Then by the minimum or average operation for these membership functions we define a membership function for each class. We ...
متن کاملCustomer Level Classification Model Using Ordinal Multiclass Support Vector Machines*
Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, howeve...
متن کاملFuzzy support vector machines for multiclass problems
Since support vector machines for pattern classification are based on two-class classification problems, unclassifiable regions exist when extended to n (> 2)-class problems. In our previous work, to solve this problem, we developed fuzzy support vector machines for oneto-(n−1) classification. In this paper, we extend our method to pairwise classification. Namely, using the decision functions o...
متن کامل